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Summary 

We construct a space-centered self-adjusting hybrid difference method for one-dimensional hyperbolic conserva- 
tion laws. The method is linearly implicit and combines a newly developed minimum dispersion scheme of the 
first order with the recently developed second-order scheme of Lerat. The resulting method is unconditionally 
stable and unconditionally diagonally dominant in the linearized sense. The method has been developed for 
quasi-stationary problems, in which shocks play a dominant role. Numerical results for the unsteady Euler 
equations are presented. It is shown that the method is non-oscillatory, robust and accurate in several cases. 

1. Introduction 

We consider a one-dimensional quasi-linear hyperbolic system of m conservation laws 

0w Of 
Ot = O---x' f = f ( w ) .  (1.1) 

We construct a new space-centered linearly implicit scheme for the solution of (1.1). The 
scheme minimizes dispersion and is unconditionally stable and unconditionally diagonally 
dominant in the linearized sense for specific values of the parameters. We restrict our 
attention to these values of the parameters. 

The scheme has been developed for quasi-steady problems, in which shocks play a 
dominant role. Implicit schemes have been found to be applicable for the computation of 
steady solutions by time-iteration at large Courant numbers, see, for example, several 
papers in [1] and [8]. Implicit methods are more difficult to apply in quasi-steady 
problems, because the schemes tend to develop strong osci!lations in the neighbourhood of 
shocks ([9, page 186], [10], [11]). It is our aim to improve the shock resolution in this case. 

In Section 2 we describe a general class of six-point difference methods. In Section 3 we 
introduce the USMD scheme. This scheme is first-order accurate. In Section 4 we apply 
the USMD scheme to the test problem of an isolated shock for the unsteady Euler 
equations. We discuss the choice of the parameters and we give some recommendations. 
We shall see that the USMD scheme has non-oscillatory and accurate shock profiles in 
several cases. As reference scheme we use the second-order scheme of Lerat, which has 
been constructed in [9, page 181], [12] and applied in [10]. 

33 



34 

In Section 5 we introduce a self-adjusting hybrid version of the USMD scheme, which 
we call the LUSMD scheme. The LUSMD scheme combines the USMD scheme with the 
above-mentioned scheme of Lerat, thus providing second-order accuracy in smooth parts 
of the flow. In Section 6 we finally present some numerical results for the LUSMD 
scheme. We consider two test problems for the unsteady Euler equations, with a maximum 
Courant number equal to 2 and 5. Both shocks and expansion fans occur. The choice of 
the parameters is discussed and recommendations are given. We shall see that the scheme 
is non-oscillatory, accurate and robust in several cases. 

2. On a general class of six-point schemes 

We consider the following linearly implicit difference method for (1.1): 

~ , , + l - w ;  1 
At Ax [h j+' /2-h j - ' /2] '  (2.1) 

hd+ll2 = h( w;+l, w;, wT++li, w;+l ), (2.2) 

h(u, v, ep, ~b )= ho(u, v)+ hi(u, v)qJ + h2(u, v)~i, (2.3) 

U + O  

" 2 / U + U ~  +(1 -,)o f>,,{ ~ ) [ / ( u )  -/(0)] }, (2.4) 

h l ( U ,  V)  
2 

, 

1 { (u+v)_yo2f2(u+v) )  At (2.6) h2(u, v)=~--~o - a  + flof~ - " f -  --'-f-- , whereo--A--- ~ .  

The scheme is conservative, space-centered and at least first-order accurate. For 8 =, - a  
and c = 2/3 + y we obtain a scheme which is a slight modification of the second-order 
method considered in [9, page 174], [12]. Related schemes have been considered in [2], [6]. 

We may calculate the modified equation (of the second kind) in the case of a single 
conservation law (i.e. rn = 1) with the aid of theorem 3.5.1 in [14]. We obtain 

~W ~f  1 . 0# 2 1 ~ 3  
0t ax + 2Ax'-ff~-'x + Ax2 ax ' 

= D(w)wx, = el(W)Wxx + E2(W)Wx 

1 2 2  2 2  D= (Xl +x:o/:), e:=½[ l 

X1 = c t  + 3 ,  X2---- 2 / 3 + y - - c ,  

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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r l = 2 + 6 a - 3 X x ,  r 2 = 3 [ ( 4 / 3 - 3 ) X  2 + 2 ( , - 1 ) ] ,  (2.11) 

E 1 = [1 + 3a + (313 + 3y - 1) o2f., 2 + 3(/3 - 1)oD] fw- (2.12) 

From (2.7), (2.8), (2.9) and (2.10) we see that the choice 3 = - a  and c = 2/3 + y provides a 
second-order scheme, as already has been remarked. If we next also choose a = - 1 /3  and 
3y = 1 - 3/3, then we see from (2.12) that E x = 0. The resulting compact nondispersive 
scheme is conditionally stable and has already been considered in Lerat [9, page 188]. 

We use the results obtained in [9, page 23, 174, 179], [12] to investigate the stability and 
diagonal dominance. For f (w)  = Aw with A a constant m x m matrix it follows, that the 
scheme is dissipative of order 2 in the sense of Kreiss if and only if 

X1 4- X2 C2 > O, a n d  (2.13) 

(X, +X2 c2 +(1 - 2/3)c2)(1 - ( 8 -  a ) - ( 1  - y -  c)c  2) > 0 (2.14) 

for all eigenvalues c of o.4. For f ( w ) =  Xw with X a real constant it follows that the 
scheme is unconditionally diagonally dominant if and only if 

[ ] a > - ½  and Y > 4 ( l + a )  o r f l = y = 0 .  (2.15) 

It is difficult to verify the condition of diagonal dominance in general. It is common use to 
verify this condition only in the case of a single linear conservation law. We shall always 
take care that (2.15) is satisfied and we assume that direct LU-decomposition ([7, page 55], 
[13]) provides in general a stable solution of the block-tridiagonal systems. 

3. The USMD scheme 

The USMD scheme is obtained from the general scheme of the previous section by setting 
E 1 = 0, i.e. by minimizing dispersion in the modified equation. For a motivation of the 
minimum dispersion property the reader may consult [14], where numerical shock struc- 
tures are examined in relation with modified equations. From (2.7), (2.8), (2.9), (2.10) and 
(2.12) we see that E 1 = 0 if 

1 1 + 3a/3 
8 = 3  1 - / 3  ' (3.1) 

1 1+ 3~-  6p2- 3/3y 
' 3 1 - / 3  ' / 3 .  1. (3.2) 

If we substitute (3.1) and (3.2) into (2.4), (2.5) and (2.6), then we obtain a three-parameter 
scheme with parameters a , /3  and y. This scheme is called the USMD scheme, because we 
restrict our attention to parameter values which imply an unconditionally stable scheme. 

Using (2.10) we get from a simple substitution: 

8 - a + (1 - y - , ) c  2 = - 2 ( a  + (/3 + y ) c  2) + (X1 4- X2 c2 ) -{- C 2. (3.3) 
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Table 3.1. Values of parameters. 

a fl y 8 e Xl X2 ~ % 

0 0 2 /3  1/3  1/3  1/3  1/3 1 - 7  
0 0 1 1/3  1/3  1/3 2 /3  1 - 1 0  
1 /3  - 1  14/9 0 - 5 / 9  1/3 1/9  3 - 3 5 / 3  

- 1 / 4  0 2 /3  1/3  1/3 1/12 1/3 1 /4  - 7  

Because E1 = 0, it follows from (2.9) and (2.12) that 

3 (a  + ( / 3 + ' y ) c  2) = c 2 -  1 -- 3 ( / 3 -  1)(X1 + X:2) ,  (3.4) 

and hence by aid of (3.3), 

3 - a + ( 1  - ~ / - , ) c 2 = 2 + ( 2 / 3  - 1)(X, +X=C:)+~c 2. (3.5) 

Finally, if we substitute (3.5) into (2.14), then it follows easily that the USMD scheme is 
unconditionally dissipative if and only if 

1 
Xl > 0 ,  /3<½, X 2 > 1 3 ( 1 _ 2 / 3 ) .  (3.6) 

We take always care that (3.6) is satisfied. As a consequence, the diffusion term D, given 
in (2.9), contains a term which grows with the Courant number. 

In Section 4 we present the results of some numerical experiments. In Table 3.1 we 
summarize the chosen value of the parameters a, fl, y and the corresponding values of the 
other parameters. 

We may easily verify (2.15) and (3.6), i.e. for these values of the parameters the USMD 
scheme is unconditionally stable and unconditionally diagonally dominant. 

4. Numerical results for the U S M D  scheme 

In the case of the unsteady Euler equations we have 

('l('ul w= p u ,  f ( w ) = -  Pu2+p . 
pE (pE+p)u  

(4.1) 

The functions fw and f2 are presented in the Appendix. The variables p, u, p and E denote 
the density, velocity, pressure and total energy. By definition E = e + u2/2, where e 
denotes the internal energy. The gas is assumed to be perfect, i.e. p = ('r - 1)pe, where y 
denotes the specific heat ratio. We choose ~/= 1.4. It is very well known that (1.1), (4.1) is 
strictly hyperbolic with characteristic speeds ~, + 1 = u ___ a and h0 = u, where a denotes the 
speed of sound. 

We consider a specific Riemann problem for (1.1), (4.1). We set d i = (p,., pi, u,) r. The 
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ini t ial  funct ion reads  

d x < 0  

w(x, O)=~(x)= ½(d, + d2), x=O 
d2, x > 0 .  

(4.2) 

W e  take Ax  = 1 /250 .  We set 

~, At 
5 = ~--~x,X = max ILl .  (4.3) 

i~ -1 ,0 .1  
x ~ R . t = O  

The  t ime step At is f ixed and  is such that  5 = 2 or  5 = 5. We restr ict  our  a t t en t ion  to the 
c o m p u t e d  values of  the pressure  in o rder  to evaluate  the exper iments .  

4.1. Shock resolution 

Let  s be an a rb i t r a ry  number .  In  (4.2) we choose  

u l = v  l + s ,  u 2 = o  2 + s ,  (4.4) 

P__22 = v_L (3' + 1)M12 ( 4 . 5 )  

Pl 02 2 + ( 3 ' -  1)M1 z '  

Pl  v~=a2M 2, a 2 = 3 ' - ,  (4.6) 
01 

M2 = y + 1 P2 t- y - 1 w h e r e  ( 4 . 7 )  
2), Pa 23' ' 

P2 = Pl = 1, P2 = 4.5, v 1 > 0. (4.8) 

Both  the j u m p  cond i t ion  and  the en t ropy  cond i t ion  are ini t ia l ly  satisfied. The  exact  
so lu t ion  consists  of  an isola ted shock wave, t ravel l ing a long the l ine x = st, i.e. w -- q,(x - 
st). This test p rob l em has a l r eady  been cons idered  in [9, page  184]. 

In  [9, page  184] it has a l ready  been  not iced,  that  sAt/Ax is a f undamen ta l  parameter ,  
re la t ing the shock speed and  the grid. Therefore  we descr ibe  the exper iments  as a funct ion  
of  5 and  sAt/Ax. W e  also present  the results  for  the second-orde r  me thod  of  Lerat ,  i.e. 
et = fl = 8 = 0 and  y = ~ = 1 / 2  in (2.4), (2.5), (2.6). 

W e  choose  sAt~At = 0, 1 /4 ,  -4- 1 / 2  and  we compu te  the solut ion over  100 t ime steps. 
In  near ly  all cases we have found  that  for large n the numer ica l  so lu t ion  converges  to a 
t ravel l ing wave and  in these cases the convergence  has  " se t t l ed"  af ter  100 t ime steps, in 
the sense that  

max  Ipy_j.o 4° - P]I  < 1 0 -  3, 
j~Z  

At 
n = 100, Jo = 40s A---~" (4.9) 

The  exact  shock pos i t ion  is deno ted  by  x s, i.e. x s = nsAt/Ax, n = 100. In  all cases x s 
coincides  with a grid point .  In  Figs. 4.1 and 4.2 we present  two c o m p u t e d  pressure  
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profiles. From these figures and Table 3.1 we may draw the conclusion that it is important 
to introduce a significant constant diffusion term in the modified equation, besides the 
minimization of dispersion, if one searches for non-oscillatory profiles. 

We set 

ET=pex(xj, t.)-pT, xj=jAx, t.=nat, (4.10) 

j o + 1 0  

x~ (4.11) N =  E le;I,  Jo= a x  " 
J=Jo-- 10 

In Table 4.1 we present some computed values of N, where N has been given in (4.11). 
In cases with a triangle (A)  we have found that condition (4.9) is not satisfied. In cases 
with an asterisk ( * )  we have found oscillations larger than one per cent of  the shock 
strength. In Figs. 4.3 and 4.4 we finally illustrate the computed pressure profiles in two 
interesting cases. 

From Table 4.1 it follows that a higher order of accuracy does not necessarily lead to a 
smaller error in the neighbourhood of shock waves, which in view of modified equations is 
not surprising ([14, page 68]). We also see that one may encounter (nonlinear) instabilities. 
At this time a theoretical explanation of these instabilities is not available, but it is clear 

T a b l e  4 .1 .  V a l u e s  o f  N ,  s h o c k  w a v e .  

s A t / A x  Lerat  a = 0 a = 0 a = 1 / 3  

# = 0  # = 0  # =  -1  
r = 2 / 3  V = 1 3' = 1 4 / 9  

2 - 0 . 5  1.84" 1.11 1.57 1.19 

2 0 1.56" 1.21 1.31 1.72 

2 0.5 2.37* 1.85 2.27 1.80 

5 - 0.5 1.77" 1.43" 1.33 2.16" 

5 0 1.21" 0.70 0.94 1.83 

5 0.25 1.58"A 0.81A 0.93 1.71A 

5 0.5 u n s t a b l e  u n s t a b l e  0.85 1.36 A 
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> 
x 

that the occurrence depends on the speed of the shock. In fact we have succeeded in 
computing stationary shocks with the above schemes at maximum Courant numbers, 
which are much larger than 5. 

The solution in the third column of Table 4.1 is more diffuse than the solution in the 
second column. This is in agreement with the modified equation (see Table 3.1 for the 
values of the parameters). To some extent it is surprising that the computed profiles are 
less diffuse for large value of ~, because the diffusion term in the modified equation of the 
USMD scheme contains a term which grows with the Courant number  (see Section 3). In 
order to investigate this situation we have calculated by analytical means the shock 
thickness in the modified equation in the case that rn = 1 and f ( w ) =  w2/2. We have 
found that in this model problem the shock thickness in the modified equation is a 
decreasing function of ~ as well. This means that it is the diminishing influence of the 
constant diffusion term in the modified equation which is more important for the balance 
between the two diffusion terms. 

4.2. Conclusions 

From Table 4.1 we first draw the conclusion that it is not very useful to introduce a 
nonzero value of the parameter  ft. The specific choice of fl in Table 3.1 has been 
exaggerated a little in order to stretch out this fact clearly. A nonzero value of fl leads to a 
significant increase of computer  time. Furthermore, if fl = 0, then from (2.4) we see that 
the explicit part  is consistent, because ho(w, w)=f(w). We may therefore regard the 
scheme as a combination of an explicit predictor and an implicit corrector. This point of 
view has some advantages, in particular with respect to the possible formulation in 
curvilinear coordinates (compare with [10]). 

Next the choice a = 0 is attractive and (in view of the obtained results) very natural. 
We have also considered, but not reported, values of the parameters which extrapolate the 
sequence in Figs. 4.1 and 4.2, for example a = 1/6 ,  fl = 0, 3' = 2 /3 .  Such a choice results 
in a larger constant diffusion term in the modified equation. The numerical experiments 
have indicated that very stable schemes may be obtained, but unfortunately with strongly 
diffuse profiles, in particular for low Courant numbers. 
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If  we choose bo th  a = 0 and fl = 0, then it follows f rom Table  4.1 that  the scheme 
becomes  more  diffuse and stable if we let y rise above the min imum value "y = 2 /3 .  I f  
stabili ty is no serious problem,  because the shock waves are slow, then we recommend  of 
course the value 3' = 2 /3 ,  because in this case the error takes a m in imum value. If instead 
the shocks have a considerable speed, then we have to enlarge the value of "t. 

5. Hybridizing the USMD scheme 

We consider two six-point difference schemes D S  1 and D S  2 of the form (2.1) with 
numerical  flux functions h °) and hi2); DSI  is a first and D S  2 a second-order  scheme. Next  
we consider an eight-point  molecule, consisting of five points  on the old and three points  
on the new time level. We construct  a new self-adjusting hybrid scheme ([4]) on this 
molecule with numerical  flux funct ion h given by 

= h(w;+2 ,  w;+ w;, w;_ w;+?, (5.1) 

h(r,, u, v, ~, ~, ~ ) = h(2)(u, v, ep, ~ ) 

+0(~ ,  u, ~, V)[h"'( . ,  v, ,~, +) -h '~ ' (u ,  o, ~, +)].  (5.2) 

The  funct ion O is called a switch function. Several switch functions 0 have been investi- 
gated in literature. We choose the switch funct ion used in [5]. Let a ( w )  denote  a function 
to be  specified later on. We set 

0 = m a x ( b ( h ,  u, v) ,  0 (u ,  v, ~)) (5.3) 

where 

/}(fi, u , v ) = { ! f l  if if fl~<'fl>c (5.4) 

with 

~=lo(~)-o(u)l-lo(u)-o(v)l, (5.5) 

~ = l a ( ~ ) - o ( u ) l + l o ( u ) - o ( v ) l .  (5.6) 

We see that 0 ~< 0 < 1. In the case of the Euler equat ions we choose ([5]) 

~(w) = p, (5.7) 

where p denotes the density. The switch function measures  variat ions in the solution. For  
example,  near  shocks we see that  0 is close to one, leading to integrat ion by a scheme 
which is close to D S  1. In smooth  parts  of  the flow O is close to zero, leading to integrat ion 
by  a scheme which is close to D S  2. The tolerance c is a measure  of  insignificant variation. 
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For  DS 1 we use the U S M D  scheme with a = fl = 0 and  for D S  2 we use Lerat 's  scheme, 
i.e. a = fl = 8 = 0 and  ¢ = T  in (2.4), (2.5), (2.6). In  view of the r ecommenda t ion  of the 
previous section, it is natura l  to choose both a = 0 and  fl = 0 (this choice has also been 
recommended  by Lerat for his scheme). The result ing hybr id  scheme depends  on one 

parameter,  viz. T- 
As usual, we freeze the value of the switch funct ion  O in (5.2) (0 ~< O ~< 1) in  order to 

investigate stabili ty and  diagonal  dominance .  We easily see that the result ing scheme is of 
the form (2.4), (2.5), (2.6) with parameter  values: a = fl = 0, T is free, ~ = 0 / 3 ,  c = (1 - O)T 
+ 0 / 3 .  Using [9, page 23, 174, 179] or [12], it next follows that the result ing scheme is 
uncondi t iona l ly  stable and  uncondi t iona l ly  diagonal ly  d o m i n a n t  for arbi t rary values of 0, 
with 0 ~< O < 1, if and  only  if T > / 2 / 3 .  

6. Numerical  results tor the L U S M D  scheme 

We apply the L U S M D  scheme with T = 2 / 3 ,  1, 3 /2 .  For  the tolerance c of insignif icant  
var iat ion in (5.4) we choose c = 10 -4. We also choose Ax = 1 /250.  

6.1. Shock resolution 

We consider  the test problem described in Section 4.1. For  mo~e details the reader is 
referred to that section. In  Table  6.1 we present  severa~ computed  values of N. In  cases 

Table 6.1. Values of N, shock wave. 

sAt/Ax y = 2/3 T =1 T = 3/2 

2 - 0.5 0.55 0.67 0.84 
2 0 0.82 0.87 0.95 
2 0.5 1.19 1.37 1.65 
5 - 0.5 0.98* 1.02 1.29 
5 0 0.60 0.77 0.98 
5 0.5 1.18" 0.80* 0.91 

4 , 5  ¸ 

n 
Pj 

2 y=~ ¥=1 

,_.~.4 ===:~ 

x r x '  

Figure 6.1. T/= 5, sAtfAx = -0.5. 
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3 ¥ = -  
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__~x 
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Figure 6.2. ~ = 5, sAt/Ax = 0.5. 
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with an asterisk (* )  we have found oscillations larger than one per cent of the shock 
strength. In  Figs. 6.1 and 6.2 we present the computed  pressure profiles in two interesting 
cases. 

If  we compare  Tables 4.1 and 6.1, then we see that in "particular for low Courant  
numbers  the accuracy for shock waves improves further. 

6.2. Expans ion  f a n s  

Let s be an arbitrary number  with 0 ~< s ~< 1. We consider the initial function (4.2) with 

7 - ' r  

P l = "~ \ a--221 P2 , 

Pl 3' 
Pl = 2' a"-~' P2 = 2a22, 

where 

1 - s  1 (  5 - ~  ) 
a l =  2 ' a 2 =  ~ 1 s , 3 ' = 1 . 4 .  

We have ~, = 1, Vs, where ~, has been given in (4.3). As can be seen from [3, page 94, 104], 
the exact solution consists of  an isolated expansion fan in between the lines x -- + st. 

We choose s = 1 / 5  in order to obtain a weakly dynamic  problem. The time step At is 
fixed and such that ~ = 2 or ~ = 5, where ~ has been given in (4.3). BecauseX = 1, we have 
~1 = A t / A x .  We compute  the solution over 60 time steps. The schemes have been found to 
be non-oscil latory in all computed  cases. We set 

80 

N= E Ie;I, 
j=  -80 

where E 7 has been defined in (4.10). We present the computed  values of  N in Table 6.2. 
We give also the values for the U S M D  scheme with a = fl = 0 and "t = 2 / 3 .  In  Fig. 6.3 we 
illustrate the computed  error distribution for ~ = 5. 

F rom Table 6.2 we see that the hybrid scheme gives a good improvement  of  the 
corresponding first-order scheme, which is as expected. We also see that the accuracy in 
the hybrid scheme decreases if 3' increases, which is also as expected in view of the 

Table 6.2. Values of N, expansion fan. 

3, z 2/3 3' = 1 3' = 3/2 USMD 

2 0.23 0.23 0.24 0.59 
5 0.21 0.24 0.28 0.47 
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increasing dissipation of the hybrid scheme. Finally, we remark that small expansion 
shocks have been found in the second-order method of Lerat. As can be seen from Fig. 6.3 
near x = 0 this phenomenon has not completely been removed in the hybrid scheme. The 
magnitude of the expansion shock is very small in the hybrid scheme and further 
precautions are not necessary. 

6.3. Conclusions 

From the results of Section 6 it is clear that the L U S M D  scheme is an attractive and 
robust scheme. The scheme is accurate, even in rather severe test problems. In view of the 
results in Table 6.1 and Figs. 6.1, 6.2, we recommend of course the value "y = 3/2 .  For this 
value we have found (nearby) monotonic profiles in all computed cases. If  applicable 
without introducing severe oscillations, i.e. if the shock waves do not move too fast, then 
we of course suggest to decrease the value of y in order to gain accuracy. If instead the 
shocks have a considerable speed, then we have to enlarge the value of y. For the 
expansion fan some loss of accuracy results from enlarging y, however, within acceptable 
bounds. 

If  one searches for an even more robust scheme, then it is suggested to include the 
parameter  a in the L U S M D  scheme. In the conclusion of Section 4 it has already been 
remarked that, for example, the choice a = 1 / 6  leads to stabilized versions of the USMD 
scheme, because the constant diffusion term in the modified equation is increased. For the 
L U S M D  scheme the same holds. Further tests have to be carded out, because the 
accuracy may become poor, in particular for low Courant  numbers. 

Appendix.  T h e  funct ions  L and f 2  for the unsteady Euler equations 

K= _ 

0 1 0 

3 - ' y  : (3 "t)u "y 1 
2 u - - 

-- a 2 3 -- u:  + 
-- U 2 +  U 

y - - 1  y - - 1  
yu 

9 
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_ 

3-~u2 (3-v)u y-1 
2 

o )u 1)u 
_Ta2)u 5~ + - -  2 + a 2  
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